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Abstract

This paper derives conditions for localized deformation for a transversely isotropic constitutive relation intended to

model the response of geological materials in the axisymmetric compression test. The analysis considers the possibility

of shear bands, with dilation or compaction, and pure compaction bands. The latter are planar zones of localized pure

compressive deformation (without shear) that form perpendicular to the direction of the maximum principal com-

pressive stress. Compaction bands have been observed in porous rock in the field and in the laboratory. They are

predicted to occur when the incremental tangent modulus for uniaxial deformation vanishes. The critical value of the

tangent modulus E for constant lateral stress is �9Kmr=2, where m is the negative of the ratio of increments of lateral to

axial deformation (at constant lateral stress), r is the ratio of axial to lateral stress increments causing zero axial de-

formation, and K is the modulus relating increments of lateral stress and deformation. The expression for the critical

tangent modulus for shear band formation is more complex and depends, in addition to r, m, and K, on the shear moduli

Gl and Gt, governing increments of shear in planes parallel and perpendicular to the axis of symmetry, respectively.

Uncertainty about material parameters prevents a detailed comparison with observations but the results are consistent

with observations of low angle shear bands (with normals less than 45� from the symmetry axis) for compressive

volumetric strain (m < 1=2). In addition, the critical tangent modulus for such bands may be positive if Gl and Gt are

small relative to K and r is around unity. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The tendency of geological materials, rocks and soils, to fail by localizing shear deformation into narrow
zones is well-known. Another less common, but possibly significant, mode of localized failure is a com-
paction band. These are thin, planar zones without evident shear in which the material is more compacted
than in the surroundings. Compaction bands have been observed in an aeolian sandstone formation in
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Utah (Mollema and Antonellini, 1996) and in a number of laboratory experiments (Olsson, 1999). A similar
phenomenon has been observed in honeycomb structures (e.g., Papka and Kyriakides, 1999) and loosely
packed granular aggregates (Gioia and Cuiti~nno, 2001). Because the porosity in the band is less than that in
the surrounding adjacent material, the permeability is also lower. Recent experiments on Castlegate
sandstone by Holcomb and Olsson (submitted for publication) have shown that the permeability is reduced
by two orders of magnitude in the compacted regions. Consequently, compaction bands can act as barriers
to fluid flow and their occurrence in highly porous formations can affect efforts to inject or withdraw fluids
for a variety of applications. These include the extraction and storage of hydrocarbons for energy, injection
of radioactive and chemical wastes, sequestration of carbon dioxide to mitigate adverse affects on the global
climate (Wawersik et al., 2001) and aquifer management for industrial and agricultural use.

Because of the possible importance of compaction bands on fluid flow in porous formations, there is a
need for a better understanding of the stress conditions and constitutive properties that lead to their for-
mation. Olsson (1999) was the first to note that the conditions for compaction band formation could be
addressed within the same framework used by Rudnicki and Rice (1975) to study the inception of shear
bands. In this approach, conditions are sought for which the constitutive description of homogeneous
deformation allows nonuniform deformation in a planar band as an alternative to further homogeneous
deformation. Issen and Rudnicki (2000) reexamined the work of Rudnicki and Rice (1975) for the possi-
bility of compaction bands. By incorporating a correction to the analysis of Rudnicki and Rice (1975) by
Perrin and Leblond (1993), Issen and Rudnicki (2000) showed that solutions for compaction bands were
possible within a range of parameters that are representative of highly porous rock. (Ottosen and Runesson
(1991) had previously identified the mathematical possibility of this type of solution but did not discuss its
physical significance.) More specifically, highly porous rocks tend to undergo inelastic compaction, possibly
enhanced by shear, and to yield under purely hydrostatic compression stress. Predictions were strongly
dependent on the details of the constitutive relation (Issen and Rudnicki, 2000, 2001) but it is possible for
the onset of compaction bands to occur for stationary or rising loads. Issen and Rudnicki (2000) found that
under modest restrictions on constitutive parameters, the most favorable deviatoric stress state for onset of
compaction bands was axisymmetric compression.

This paper continues the line of investigation of Issen and Rudnicki (2000) by re-examining the analysis
of Rudnicki (1977). He used a transversely isotropic constitutive relation to investigate the conditions for
the onset of shear bands in the axisymmetric compression test (Fig. 1), the most common testing config-
uration for rock specimens. Specimens may be anisotropic due to layering or other fabric developed in situ.

Fig. 1. Schematic illustration of the axisymmetric compression test. The x3 axis is also the symmetry axis for transverse isotropy. Inset

shows increments of shear governed by moduli Gl and Gt.
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Even in specimens that are nominally isotropic before loading, the preferential growth of microcracks in the
axial direction can induce a transverse anisotropy. This paper considers the possibility of compaction band
formation and reexamines the conditions for shear band formation emphasizing application to highly
porous rock that undergoes inelastic compaction.

2. Constitutive relation

The geometry of the axisymmetric compression test is shown in Fig. 1 and the specimen is assumed to be
oriented so that the x3 direction is the axis of symmetry. The constitutive relation used by Rudnicki (1977)
(suggested by Rice, 1976 (personal communication)) is given by the following relation between the com-
ponents of the rate of deformation tensor Dij and the components of the Jaumann rate (Prager, 1961) of
Cauchy stress r̂rij

D33 ¼
1

E
r̂r33

�
� r

1

2
ðr̂r11 þ r̂r22Þ

�
ð1aÞ

1

2
ðD11 þ D22Þ ¼ �mD33 þ

1

9K
ðr̂r11 þ r̂r22Þ ð1bÞ

D11 � D22 ¼
1

2Gt

ðr̂r11 � r̂r22Þ ð1cÞ

D31 ¼
1

2Gl

r̂r31; D32 ¼
1

2Gl

r̂r32 ð1dÞ

For constant lateral confining pressure, r̂r11 ¼ r̂r22 ¼ 0, E in (1a) is the tangent modulus for axial stress
versus axial strain and m in (1b) is the negative of the ratio of an increment of lateral deformation to an
increment of axial deformation. The volume strain-rate, Dkk, is ð1� 2mÞD33 and, hence, has the same sign as
D33 for m < 1=2. For axisymmetric compression (D33 < 0), the volume strain rate is compactive (typical of
high porosity rock) for m < 1=2 and dilatant (typical of low porosity rock) for m > 1=2. If an increment
of axial stress is accompanied by an increment of lateral confining stress r̂r11 ¼ r̂r22 6¼ 0, then r is the ratio of
axial stress increment to lateral stress increment for which the axial deformation increment is zero
(D33 ¼ 0). The modulus 9K relates the increments of lateral deformation and stress (with D33 ¼ 0). For
isotropic elasticity and plastic normality (or a flow rule associated with the yield condition) r ¼ 2m but this
condition is usually too restrictive for geological materials. Setting D11 ¼ D22 ¼ 0 (1b) and eliminating
r̂r11 ¼ r̂r22 from (1a) reveals that E þ 9Krm=2 is the tangent modulus for uniaxial strain. The formulation
includes two shear moduli (Fig. 1). The transverse shear modulus Gt in (1c) governs increments of shearing
transverse to the axial direction. The longitudinal shear modulus Gl governs increments of shearing on
planes parallel to the axial direction.

Although the discussion here emphasizes the interpretation in terms of the behavior of rock, it could be
applied to other materials such as metals, composites and polymers. The relation (1a)–(1d) is the most
general transversely isotropic, incrementally linear form. Miles and Nuwayhid (1985) have used a con-
stitutive relation of the same type, but written in different form, and Hutchinson and Miles (1974) used a
similar relation, specialized to incompressible materials, to investigate necking bifurcations in elastic–plastic
cylinders subjected to uniaxial tension. Chau (1992, 1993) used the relation (1a)–(1d) to investigate bi-
furcations in tension and compression of compressible elastic–plastic cylinders.

This constitutive relation can be compared with that used by Rudnicki and Rice (1975) in their shear
band analysis and by Issen and Rudnicki (2000) in the analysis for the onset of compaction bands:
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Dij ¼ Cijklr̂rkl þ
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where Cijkl is the tensor of elastic compliances, r0
ij is the deviatoric stress, �ss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
ijr

0
ij=2

q
is the Mises

equivalent shear stress, dij is the Kronecker delta and the second term is dropped for purely elastic de-
formation. The three inelastic constitutive parameters are h, b, and l. The hardening (softening) modulus h
is the slope of the shear stress versus plastic shear strain curve at constant mean stress. The dilatancy factor
b is the ratio of inelastic increments of volume strain (positive in dilation) to inelastic increments of shear
strain. The coefficient l is the local slope of the yield surface in a plot of �ss versus mean compressive stress
�rkk=3. A geometric interpretation of l and b is shown in Fig. 2. For low porosity rocks (or high porosity
rocks at low compressive mean stress), l > 0 and can be interpreted as a friction coefficient: further yield in
shear is inhibited by increasing compressive stress. (For low porosity rocks the mean stress at which yield
occurs in compression is so high that the surface is effectively open on the mean stress axis.) But, as dis-
cussed by Olsson (1999) and Issen and Rudnicki (2000, 2001) and as illustrated in Fig. 2, for high porosity
rocks that yield in pure hydrostatic compression, l will be negative as the surface approaches the hydro-
static axis.

If (2) is specialized to axisymmetric deformation and isotropic elasticity with shear modulus Ge, bulk
modulus Ke and Poisson’s ratio me, then the parameters of (1a)–(1d) can be expressed in terms of those of
(2). Both of the shear moduli in (1a)–(1d), Gt and Gl correspond to the elastic shear modulus Ge in (2). The
remaining parameters of (1a)–(1d) are given terms of those of (2) as follows:
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Fig. 2. Sketch of the yield surface and the inelastic strain increment vector (dep;d�ccp) in the space of Mises equivalent shear stress �ss
versus mean compressive stress �rkk=3. The slope of the surface l and the ratio b ¼ dep=d�ccp may be positive or negative.
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where d ¼ �1 for compression and d ¼ þ1 for extension. All the constitutive parameters, including the
elastic moduli, may evolve in a complex way with inelastic deformation (Holcomb and Rudnicki, 2001;
Sulem et al., 1999).

3. Discussion of material parameters

Rudnicki (1977) cites values of m ranging from 0.2 to 4.1 inferred from axisymmetric compression tests
on several low porosity rocks. Determining values of r requires altering the lateral stress which is not done
in the conventional axisymmetric compression test. Some information can, however, be obtained from the
relation (3b) and observed values of l. For h=Ge 
 1, the expression for r (3b) reduces to

r ¼ ð1þ 2l=
ffiffiffi
3

p
Þ=ð1� l=

ffiffiffi
3

p
Þ ð4Þ

Typical values of l for brittle, dilatant rock are in the range 0.5 to 1.0 (Rudnicki and Rice, 1975) and
correspond to values of r from 2.2 to 5.1. For the same approximation, h=Ge 
 1, in (3c) 2m reduces to

2m ¼ ð1þ 2b=
ffiffiffi
3

p
Þ=ð1� b=

ffiffiffi
3

p
Þ ð5Þ

and values of b representative of low porosity rock, 0.2–0.5, correspond to the range 0.7–0.95 for m. For the
same approximation leading to (4) and (5), E and h will have the same sign for axisymmetric compression if
l <

ffiffiffi
3

p
and b <

ffiffiffi
3

p
. As noted by Issen and Rudnicki (2001), the second condition must be met for axi-

symmetric compression deformation and violation of the first condition makes it impossible to stay on the
yield surface in axisymmetric compression.

The values just cited for r and m pertain to low, porosity rock for which b and l are positive and,
typically, b < l. But, as noted by Olsson (1999) and Issen and Rudnicki (2000) and, as depicted in Fig. 2,
both l and b are likely to be negative for high porosity rock and sufficiently large compressive mean stress.
The expressions (4) and (5) indicate that r will be positive for l > �

ffiffiffi
3

p
=2 and that m will be positive if

b > �
ffiffiffi
3

p
=2. As the yield surface approaches the mean compression axis in Fig. 2, symmetry implies that

the slope is vertical, corresponding to l ! �1. In this limit, r from (4) approaches �2:0. On portions of
the yield surface where l < 0, the direction of the inelastic strain increment is usually assumed to be normal
to the yield surface (e.g., Fossum and Fredrich, 2000; Wong et al., 1992). Hence, b ¼ l and b also becomes
large and negative as the yield surface approaches the compression axis, corresponding to a limit of m ¼ �1.
Thus, the structure of the yield surface suggests that there will be a range of stress states near the hy-
drostatic compression axis where both r and m will be negative. A negative value of m means that a com-
pressive increment of axial deformation causes a compressive increment of lateral deformation at constant
lateral stress. A negative value of r means that a tensile increment of axial stress is required to maintain a
zero increment of axial deformation in response to a compressive increment of lateral stress. Although
anomalous, it is possible to envision this type of response for an extremely porous material with a open-cell
structure but more difficult to do so for a rock with 20–30% porosity. Observational evidence is not clear
since virtually all tests are either hydrostatic compression or axisymmetric compression with constant
lateral stress. The load path for the latter is a line with slope

ffiffiffi
3

p
in the coordinates of Fig. 2. Consequently,

unless the initial confining pressure is nearly the value for yield in hydrostatic compression the load path
does not intersect the yield surface near the hydrostatic axis.

Direct measurement of the modulus K also requires systematic alteration of the lateral confining stress
and, hence, is not well-constrained by observations. For isotropically elastic deformation K ¼ 4ðKe þ
Ge=3Þ=9, but the value just prior to localization is likely much less because of damage and axial crack
growth. Hoenig (1979) has made self-consistent calculations for the reduction in moduli for elastic solids
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with oriented cracks. His calculations for cylindrical transverse isotropy (a random distribution of cracks
with normals perpendicular to a given axis) corresponds to the axisymmetric compression geometry with
cracking predominantly in the axial direction. Fig. 2 of Hoenig (1979) plots the modulus K (E in Hoenig
(1979)) against a crack density parameter � ¼ Nha3i, where N is the number of cracks per unit volume, a is
the crack radius and h� � �i denotes the orientation average. For values of � equal to 0.2 and 0.4, K is reduced
to about 55% and 20% of its value for the uncracked solid, respectively. These results are for flat cracks and,
hence, may be more appropriate for the reductions in low porosity rock due to axial crack growth than for
high porosity rocks in which the voids have more equant dimensions. Nevertheless, significant reductions in
K may also be expected for high porosity rock.

The shear moduli Gt and Gl govern increments of shear superimposed upon axisymmetric loading and,
hence, are also not measured in the conventional axisymmetric compression test. For a smooth yield surface
elastic–plastic model, these will correspond to elastic moduli, but in rocks elastic moduli can be reduced
from their initial values by cracking and other damage processes during loading. Rudnicki (1977) infers that
Gl may exceed Gt by 10% from wave speed measurements on cylinders of Westerly granite (a low porosity
rock) at 20 MPa (Bonner, 1974). Other indications of the reduction in the values of the shear moduli can be
obtained from the self-consistent calculations of Hoenig (1979). According to the results plotted in Hoenig’s
Fig. 2, the modulus Gl (G in Hoenig (1979)) is reduced to about 78% and 58% of its initial value when the
crack density parameter � is equal to 0.2 and 0.4, respectively. The same plot shows Gt reduced to about
58% and 25% of its initial value at the same values of �.

The just-cited estimates of Gt and Gl presume elastic (though, damaged) response for increments of shear
as would be the case for a smooth yield surface model. Very general considerations (Hill, 1967) suggest,
however, that inhomogeneous microscale processes will lead to a vertex on the yield surface at the current
stress point, at least if the yield surface is defined in terms of small offset plastic strains. In this case an
increment of shear superimposed upon axisymmetric deformation will cause nonelastic response. Rudnicki
and Rice (1975) have suggested a model for brittle rock, similar to the slip theory of Batdorf and Budiansky
(1949), that predicts vertex formation and Rudnicki and Chau (1996) have calculated the evolution of the
vertex angle for torsion following axisymmetric compression for a modification of the microcrack model
introduced by Costin (1983a,b). Olsson (1992) has used oscillating stress paths in a tension––compression
test to infer the existence of a yield surface vertex for Tennessee marble and Olsson (1995) measured the
modulus corresponding to Gl (G in his notation) in torsion tests of thin-walled cylinders of Tennessee
marble (low porosity). He finds that Gl decreases approximately linearly with shear strain to about 46% of
its initial elastic value at a shear strain of 0.018. Although the values of Gt and Gl corresponding to response
at a vertex could, in principle, be calculated for a microstructural model, such as the self-consistent cal-
culations of Hutchinson (1970) for polycrystalline metals, there appear to be no such calculations for geo-
materials. Because of the difficulty of determining these ‘‘vertex’’ or out-of-plane moduli by either
measurement or calculation, Vardoulakis and Graf (1985) have suggested using observations of shear band
formation in granular materials to infer them. Desrues (2002) expands upon this suggestion and presents an
example of its implementation for a hypo-plastic constitutive model.

4. Localization analysis

The conditions required on the velocity and stress rate fields at the inception of localization are well-
established (Rice, 1976). Continuity of the velocity field requires that possible discontinuities in the velocity
gradients are limited to the form

D
ovi
oxj

� �
¼ njgi ð6Þ
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where D is the difference between (� � �) inside and outside of the band, the ni are components of the unit
normal to the band and the gi are functions only of distance across the band, n � x. Continuing equilibrium
at the onset of localization requires that the traction-rate be continuous across the boundary of the band

niD _rrij ¼ 0 ð7Þ
If the constitutive relation is assumed to be the same inside and outside of the band at the inception of
bifurcation, then use of (1a)–(1d) with (6) and (7) leads to a linear, homogeneous set of equations for the gi
(Rudnicki and Rice, 1975; Rice, 1976). Setting the determinant of the coefficient matrix equal to zero yields
the condition on the band orientation and the constitutive parameters for which localization is possible.
The magnitude of g is undetermined but the ratios of the components give the difference in the mode of
deformation inside and outside of the band.

The Jaumann rate of stress that appears in (1a)–(1d), is related to the material rate in (7) by Prager
(1961)

r̂rij ¼ _rrij � Xikrkj þ rikXkj ð8Þ
where the spin tensor X is the anti-symmetric part of the velocity gradient tensor. Substituting (8) into (9)
and using (6) yields

nkDr̂rkj ¼ �1
2
fnkgknirij � gkrkj þ nkrklnlgj � nkrklglnjg ð9Þ

For an axially symmetric stress state, only r33 and r11 ¼ r22 are nonzero. This simplifies expression (9) to

nkDr̂rkj ¼ �1
2
ðr33 � r11Þ½n3naga � n2g3� ð10aÞ

nkDr̂rka ¼ �1
2
ðr33 � r11Þ½n23ga � nan3g3� ð10bÞ

where the subscript a ¼ 1, 2 and n2 ¼ n21 þ n22. Inverting the constitutive relation (1a)–(1d), substituting into
(10a) and (10b), and using (6) yields three homogeneous equations for g1, g2, and g3:

ðn1g1 þ n2g2Þ n3 Gþ
l

�	
þ 9Kr

4

�

þ g3 n2G�

l

	
þ n23 E

�
þ 9Kmr

2

�

¼ 0 ð11aÞ

9K
4

n2ðn1g1 þ n2g2Þ þ ½n2Gt þ n23G
þ
l �g2 þ n2n3g3 G�

l

	
þ 9Km

2



¼ 0 ð11bÞ

½n2Gt þ n23G
þ
l �g1 þ

9K
4

n1ðn1g1 þ n2g2Þ þ n1n3g3 G�
l

	
þ 9Km

2



¼ 0 ð11cÞ

The combinations G�
l ¼ Gl � ð1=2Þðr33 � r11Þ have been called slide moduli by Biot (1965). If the stress

difference ðr33 � r11Þ 
 Gl, corresponding to neglecting the difference between the co-rotational and ma-
terial stress rates in (1a)–(1d), these equations are identical to those given by Rudnicki (1977).

5. Compaction bands

The condition for a compaction band is easily determined from (11a)–(11c). Since the band normal is the
direction of the maximum compressive stress, n3 ¼ 1, n1 ¼ n2 ¼ 0 (Fig. 3b). Thus, the only possibility for
g3 6¼ 0 occurs when

EC
crit ¼ �9Krm=2 ð12Þ

The condition corresponds to a vanishing tangent modulus for the stress–strain curve for uniaxial strain
(D11 ¼ D22 ¼ 0 in (1a)–(1d)). Compaction bands have been observed in axisymmetric compression tests
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with constant lateral stress when the stress–strain curve is approximately flat, E � 0 and the condition (12)
indicates that this requires at least one of r, m, or K to be zero. If r ¼ 0, the axial deformation is not affected
by increments of lateral compressive stress and for r < 0, compressive increments of lateral stress cause
compressive axial deformation. If m ¼ 0, axial deformation (at constant lateral confining stress) causes no
lateral deformation; hence, the deformation is uniaxial compression. If K ¼ 0, small increments of lateral
compressive stress cause large increments of lateral deformation. This would be the case for very strong
anisotropy caused by predominantly axial crack growth; the lateral stiffness would be reduced by opening
of these cracks but this would require m > 1=2 and dilatant volumetric strain increments.

The condition (12) is similar to that obtained by Issen and Rudnicki (2000) in terms of the constitutive
parameters used by Rudnicki and Rice (1975)

hCcrit ¼ �Ge

ð1þ meÞ
3ð1� meÞ

1

�
þ 2lffiffiffi

3
p
�

1

�
þ 2bffiffiffi

3
p
�

ð13Þ

An expression for the critical value of the tangent modulus in axisymmetric compression could be obtained
by substituting hCcrit into (3a). Issen and Rudnicki (2000, 2001) note that the condition, hCcrit > 0 requires one
(but not both) of l or b to be less than �

ffiffiffi
3

p
=2. When h=Ge 
 1 in (3a)–(3d), the expressions (4) and (5)

show that this corresponds to requiring that r or m (but not both) be less than zero. Issen and Rudnicki
(2001) also note that the constitutive formulation of Rudnicki and Rice (1975) implicitly assumes that
inelastic volumetric strain is due entirely to inelastic shear deformation, but, for very porous rocks, inelastic
compaction also results from hydrostatic compression. Including this effect in an approximate way tends to
reduce the effective value of me. If the slope of the curve of hydrostatic compression versus inelastic volume
strain becomes flat, the effective value of me approaches �1 and, hence, hCcrit approaches zero.

Setting n3 ¼ 1, n1 ¼ n2 ¼ 0 in (11a) and (11b) reveals another possible mode of localized deformation
with g3 ¼ 0 and either g1 or g2 nonzero. This occurs when

Gþ
l ¼ 0 ð14Þ

which corresponds to the expression given by Rosen (1965) for the kinking stress to cause microbuckling of
aligned-fibre composites. Budiansky and Fleck (1993) note that this expression overestimates the failure for
conventional polymer matrix composites because microbuckling in these materials is primarily an inelastic

Fig. 3. Sketch of the localized zone geometry. (a) The normal to the plane of the band n makes an angle h with the axial x3 direction.
The vector g makes an angle c with the plane of the band. (b) For a compaction band n is in the x3 direction and c is in the opposite

direction.
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phenomenon rather than an elastic one, as assumed by Rosen (1965). The expression (14) may, however, be
a more accurate estimate of the failure stress for open-cell materials, in which failure initiates by local shear
buckling of a cell wall.

6. Shear bands

Shear bands also occurred in the experiments in which Olsson (1999) observed compaction bands and
the analyses of Issen and Rudnicki (2000, 2001) suggest that small variations in material parameters may
favor the appearance of either shear or compaction bands. B�eesuelle (2001) has shown that the results of
Rudnicki and Rice (1975) predict that the mode of deformation in the localized zone (shear versus dilation
or compression) varies continuously between pure compaction and pure dilation. Consequently, it is useful
to reexamine and expand upon the predictions of Rudnicki (1977) for shear band occurrence.

Setting the determinant of the coefficient matrix of the gi in (11a) and (11b) equal to zero and solving for
the tangent modulus E yields

E ¼ �ð9Krm=2Þ þ tan2 h
ðGþ

l þ 9Kr=4ÞðG�
l þ 9Km=4Þ

Gþ
l þ tan2 hðGt þ 9K=4Þ

�
� G�

l

�
ð15Þ

where h is the angle between the normal to the band and the axial (x3) direction (Fig. 3a). If the difference
between the Jaumann stress rate and the ordinary rate is neglected so that Gþ

l ¼ G�
l ¼ Gl, then the angle

giving the largest value of E satisfies

tan2 hcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGl þ 9Kr=4ÞðGl þ 9Km=4Þ

p
� Gl

ðGt þ 9K=4Þ ð16Þ

Substituting (16) into (15) yields

ES
crit ¼ �2rm

9K
4

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGl þ 9Kr=4ÞðGl þ 9Km=2Þ

p
� Gl

� 
2
ðGt þ 9K=4Þ ð17Þ

Since the second term is positive (as long as Gt þ 9K=4 > 0), the critical tangent modulus for shear band
onset exceeds that for compaction band onset, ES

crit > EC
crit. Thus, in a range where both compaction bands

and shear bands are possible, the onset of shear bands will precede that of compaction bands if the tangent
modulus is monotonically decreasing. The tangent modulus for axisymmetric deformation in porous rocks
with constant lateral confining stress does not, however, appear to be monotonically decreasing (Zhang
et al., 1990; Olsson, 1999). Typically, the modulus decreases to near zero or, possibly, even less than zero,
remains near zero for an interval of strain and then increases again. The increase of the tangent modulus
following the flat portion is evidently due to hardening associated with attainment of a more compacted
structure throughout the specimen.

The angle between g and the plane of the band, denoted by c (Fig. 3), is related to the band angle h
by

tan c ¼ ½Gl � Gt � ð1� 2mÞð9K=4Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gl þ 9Kr=4

p
� Gl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gl þ 9Km=2

p
tan hcritðGt þ 9K=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gl þ 9Kr=4

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gl þ 9Km=2

ph i ð18Þ

If normality is satisfied, r ¼ 2m, the longitudinal shear modulus Gl does not appear in the expressions for the
band angle and the critical tangent modulus. The band angle is given by

tan2 hcrit ¼
r2

ð1þ 4Gt=9KÞ
ð19Þ
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and the critical tangent modulus by

ES
crit ¼

�Gtr2

ð1þ 4Gt=9KÞ
ð20Þ

Consistent with the predictions of Rudnicki and Rice (1975), the critical tangent modulus is always negative
(to neglect of the co-rotational terms) when normality is satisfied.

If the shear moduli are negligible with respect to the transverse modulus, Gl, Gt 
 K, the band angle is
given by

tan2 hcrit ¼
ffiffiffiffiffiffiffi
2rm

p
ð21Þ

and the critical tangent modulus is

Ecrit ¼ Gl

ffiffiffiffiffi
2m

ph
�

ffiffi
r

p i2
� 2rmGt ð22Þ

(This expression corrects Eq. (17) of Rudnicki (1977) which is missing a factor of two in the third term.)
Note that Ecrit is always negative for normality, r ¼ 2m, and increases if Gt is reduced relative to Gl. The
expression (18) reduces to

tan c ¼ � r
2m

� �1=4 ð1� 2mÞffiffiffiffiffi
2m

p
þ

ffiffi
r

p ð23Þ

If the volume strain is compressional, m is less than 1=2. In this case, c is negative and the normal component
of g is directed opposite to the band normal n.

These results are illustrated in Figs. 4–8. In each figure, results are plotted against values of m ranging
from 0.01 (or, sometimes, 0.1) to 1. Recall that for axisymmetric compression the volumetric deformation is
compactive (dilatant) for m < ð>Þ1=2 and the lateral deformation is extensile (compressive) if m > ð<Þ0.
Because the band angle is easily observed in experiments, even when the precise onset of localization is
difficult to determine, results are plotted in Figs. 4–6 for values of hcrit equal to, 30�, 45�, 50�, 55� and 60�.
Typical band angles for low porosity, dilatant rocks are around 60�, but Olsson (1999) observed shear
bands at angles ranging from 14� to 43� in his experiments on Castlegate sandstone with a porosity 25–30%.

Fig. 4. Values of r and m satisfying (16) for different values of h and 4Gl=9K ¼ 0:4 and 4Gt=9K ¼ 0:1.
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B�eesuelle (2001) reported a systematic variation of angle in axisymmetric compression tests on Vosges
sandstone, ranging from 54� at the lowest confining pressure, 10 MPa, down to 37� at 60 MPa. The de-
crease in angle with confining pressure is associated with a change in the volumetric deformation from
dilation to compression. Fig. 4 shows the values of r satisfying (16) for Gl ¼ 4Gl=9K ¼ 0:4 and
Gt ¼ 4Gt=9K ¼ 0:1. Fig. 4 shows that high angle shear bands require extremely large values of r unless m is
large (near unity or greater) corresponding to dilatant behavior. Low band angles are favored by small
values of r or m.

Fig. 5 shows the critical value of the tangent modulus ES
crit divided by the longitudinal shear modulus Gl

for the same parameters used in Fig. 4. Note that the value of r for each point in Fig. 5 is also determined

Fig. 5. Values of the critical tangent modulus at shear localization ES
crit from (15) divided by Gl against m for different values of h and

4Gl=9K ¼ 0:4 and 4Gt=9K ¼ 0:1. Values of r are given in Fig. 4.

Fig. 6. Values of the mode angle c from (18) versus m for different values of h and 4Gl=9K ¼ 0:4 and 4Gt=9K ¼ 0:1. Values of r are given
in Fig. 4.
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from Fig. 4. For example, for m ¼ 0:1 and h ¼ 60�, Fig. 5 yields ES
crit=Gl � 12:5, suggesting that a shear band

would appear well before peak in the stress–strain curve and, perhaps, even near the elastic range. Fig. 4
shows, however, that for m ¼ 0:1 and h ¼ 60�, the value of r is very large, around 23, and probably far
greater than is realistic. The graph does show that shear bands with angles of 30� can occur for ES

crit � 0 for
low values of m corresponding to compactive behavior.

Fig. 6 shows the variation of the mode angle c for the same values of Gl and Gt as in Figs. 4 and 5, 0.4
and 0.1, and a similar range of angles. (The same comment concerning the interpretation of Fig. 5 also
applies here.) As expected, for smaller band angles and smaller values of m, c becomes more negative in-
dicating a larger component of compactive strain normal to the band.

Figs. 7 and 8 show the effects of variations in the shear moduli Gl and Gt on the value of r required for a
band angle of 30� (Fig. 7) and the corresponding ratio ES

crit=Gl (Fig. 8). Figs. 7a and 8a show results for
equal values of Gl and Gt, 0.0 (omitted from Fig. 8a), 0.2, 0.4, 0.6 and 0.8. Figs. 7b and 8b show results for a
fixed value of Gl ¼ 0:8 and Gt ¼ 0:0 (omitted from Fig. 8b), 0.2, 0.4, 0.6 and 0.8. Fig. 7a shows that the
value of r for hcrit ¼ 30� increases with increasing Gl ¼ Gt for 0:08K mK 0:8. Outside this range, the de-
pendence becomes more complicated and then reverses for much lower and higher values of m. Increasing

Fig. 7. Values of r and m satisfying (16) for h ¼ 30� and various values of (a) 4Gl=9K ¼ 4Gt=9K and (b) 4Gt=9K for 4Gl=9K ¼ 0:8.

Fig. 8. Values of the critical tangent modulus at shear localization ES
crit from (15) divided by Gl against m for h ¼ 30� for various values

of (a) 4Gl=9K ¼ 4Gt=9K and (b) 4Gt=9K for 4Gl=9K ¼ 0:8.
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Gl ¼ Gt decreases ES
crit=Gl (Fig. 8a). Decreasing the ratio Gt=Gl from unity decreases the required value of r

(Fig. 7b) and decreases (makes more negative) the corresponding value of ES
crit.

7. Discussion

The predictions here treat the occurrence of a shear band or compaction band as a bifurcation from
homogeneous deformation. This approach constrains the constitutive parameters for which bands of
particular orientations can occur. The analysis predicts that formation of a compaction band is possible
when the tangent modulus for uniaxial deformation vanishes. This requires that the tangent modulus for
axisymmetric compression with constant lateral stress (r̂r11 ¼ r̂r22 ¼ 0Þ E satisfies (12). Olsson (1999) and
Wong et al. (2001) observed compaction bands to form on flat portions of the stress–strain curve where
EC
crit � 0. Since the confining stress was constant in these experiments, (12) indicates that one of m, r, and K is

zero. Fig. 6 of Olsson (1999) shows that the lateral strain measured at the mid-height of the specimen is
roughly constant during the flat portion of the stress–strain curve suggesting that the deformation is one-
dimensional corresponding to m ¼ 0 (although it is not required by the boundary conditions to be so). The
values of b inferred by Olsson (1999) and by Wong et al. (2001) imply, however, that m > 0. Whether this is
due to uncertainty in their determination, the failure of the constitutive relation (2) to include anisotropy or
inadequacy of the bifurcation approach to localization is unclear.

The analysis here pertains to the inception of compaction band formation. Recent experiments suggest,
however, that much of what happens during the flat portion of the stress–strain curve may be due to band
propagation or thickening or the formation of multiple bands. In this case, the flat portion of the apparent
stress–strain curve does not indicate material response but instead the averaged response of inhomogeneous
deformation. From acoustic emission measurements, Olsson and Holcomb (2000) infer that once local
bands of compaction form they thicken with increasing boundary displacement until the entire specimen is
compacted. They found that the boundary between the compacted and uncompacted regions propagated as
a planar front with a speed roughly an order of magnitude greater than the imposed platen displacement
rate. A kinematic analysis by Olsson (2001) that treats the compaction front as discontinuity in porosity
propagating quasi-statically at constant stress shows that the propagation velocity is proportional to the
platen velocity and to the reciprocal of the porosity jump. But the relation of propagation to other features
of the constitutive response of the compacted and uncompacted material is unknown. Microscopic ob-
servations by DiGiovanni et al. (2000) indicated that the porosity decrease across this front was due to
intense grain breakage and rotation. Olsson (2001) suggests that the incipient formation of the band is
associated with a small drop in stress that precedes that flat portion of the nominal stress–strain curve. This
would be consistent with the negative value of EC

crit (12) predicted for positive values of r, m, and K. Also,
Wong et al. (2001) note that the overall stress–strain curves for samples of Bentheim sandstone in which
compaction bands were observed were hardening but ‘‘punctuated by episodic stress drops’’. They report
that the number of compaction bands increased with the number of stress drops, a phenomenon similar to
that observed in crushing of honeycombs (Papka and Kyriakides, 1998, 1999).

The analysis here is phrased in terms of the macroscopic, phenomenological constitutive properties and
only indirectly related to the micromechanisms of deformation. In their field observations, Mollema and
Antonellini (1996) observed compaction bands in sedimentary layers with high porosity (20–25%) and large
grain sizes (0.3–0.8 mm) but deformation bands (involving both shear and dilation or compaction) in layers
with lower porosity and smaller grain sizes. Higher porosity is probably reflected in smaller values of m but
the correlation is, at best, indirect. DiGiovanni et al. (2000) compare the micromechanical deformation
mechanisms of the Castlegate sandstone, in which Olsson (1999) observed compaction bands, with those of
Berea sandstone, in which compaction bands have not been observed (Men�eendez et al., 1996). Men�eendez
et al. (1996) found that compaction in Berea sandstone was primarily associated by the onset of brittle
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microcracking at grain contacts, whereas DiGiovanni et al. (2000) found that grain breakage and frag-
mentation in the Castlegate sandstone was preceded by volume reduction due to breakage of grain contacts
and rotation without fragmentation. They attribute the difference to fabric and cementation. Further work
is needed to establish the relationship between microstructural features and the macroscopic response.

The macroscopic constitutive formulation used here also involves considerable uncertainty. The bound-
ary of the stress states for which the response is elastic is depicted in Fig. 2 as a single surface. But con-
stitutive formulations for porous rocks and granular materials often describe the behavior in terms of two
surfaces: a shear yield (or failure) surface for which l > 0 and a ‘‘cap’’ (often assumed to be elliptical) in-
tersecting the mean stress axis (Dimaggio and Sandler, 1971; Fossum and Fredrich, 2000). Issen (in press)
has pointed out that the use of two surfaces is consistent with the likely predominance of different microscale
deformation mechanisms at low (microcracking with dilatancy) and high mean stresses (pore collapse and
grain crushing with compaction). Indeed, Wong et al. (2001) report that their observations rule out a
constitutive model that does not include multiple deformation mechanisms. Conditions for localization near
the intersection of the two surfaces are complicated but, by examining some special cases of a two surface
model, Issen (in press) has shown that it is possible to choose parameters consistent with the range in which
Olsson (1999) observed compaction bands.

Predictions of shear band formation are complicated by uncertainty about the shear moduli Gl and Gt

which do not appear in the expression for the critical tangent modulus for a compaction band (12). The
parameters r, m and K can be measured easily in the conventional axisymmetric compression geometry
(although, in practice, the lateral confining pressure is kept constant) but Gl and Gt cannot. Nevertheless,
observation of the angle that the band normal makes with the axis of the specimen is straightforward.
Values less than 45� in compacting rocks (Olsson, 1999; B�eesuelle, 2001) are consistent with predictions for
low values of m (less than 1=2). Comparison of predictions and observations of the critical tangent modulus
is more difficult. The value at the onset of band formation is often difficult to determine precisely and the
predicted value depends on the current values of the other constitutive parameters, which typically evolve
with deformation. In addition, as discussed by Rudnicki and Rice (1975), the bifurcation analysis with a
smooth yield surface constitutive formulation tends to predict excessively negative values of the tangent
modulus for the onset of localization in axisymmetric compression. Because the kinematic condition (6)
requires the difference between the localized field and the homogeneous field to be a plane-strain defor-
mation (Rice, 1976; B�eesuelle, 2001), the onset of localized deformation from an axisymmetric state requires
an abrupt change in the deformation pattern. A smooth yield surface formulation is well known to
overpredict the stiffness of response to such a change resulting in the prediction of an overly negative
tangent modulus. This feature may, however, be a less significant factor for low angle shear bands involving
a relatively large ratio of compaction to shear and, consequently, for which the deformation pattern is more
similar to axisymmetric compression.

8. Conclusions

Predicted conditions for the onset shear bands and compaction bands in a transversely isotropic material
are roughly in accord with observations. Small values m (m 
 1=2) favor formation of compaction bands
and of low angle shear bands (with normals <45� from the symmetry axis) at near zero (or, even positive, in
the case of shear bands) values of the tangent modulus. The condition m ¼ 0 corresponds to uniaxial (one-
dimensional) deformation. Because uniaxial strain is thought to approximate accurately the deformation
state in many hydrocarbon reservoirs (eg., Teufel et al., 1991), nonuniform, localized compaction may be
widespread. The detailed constitutive information needed for precise predictions is, however, not available.
A particular need is for a better understanding of the transition from the regime of mean (compressive)
stress that inhibits inelastic deformation to that which enhances it and how this transition is related to the
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microstructural features such as cement, pore shape and fabric. In addition, accurate predictions of the
tangent modulus at the onset of shear band formation require knowledge of the longitudinal and transverse
shear moduli which cannot be measured directly in the axisymmetric compression configuration. Recent
experimental work has suggested that the occurrence of compaction bands can be followed by propagation,
or thickening of the compacted region of lower permeability.
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